Concept Question 13-4: Is the Fourier series representation given by Eq. (13.15) applicable to a periodic function that starts at t = 0 (and is zero for t < 0)?

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t),$$

(sine/cosine representation) (13.15)

No, the Fourier series representation is for everlasting periodic functions that extend over all time. For a periodic function that starts at t = 0, we need to use the Laplace transform.

Input $x(t)$			
Duration	Waveform	Solution Method	Output $y(t)$
Everlasting	Sinusoid	Phasor Domain	Steady-State Component (no transient exists)
Everlasting	Periodic	Phasor Domain and Fourier Series	Steady-State Component (no transient exists)
One-sided, $x(t) = 0$, for $t < 0^-$	Any	Laplace Transform (unilateral) (can accommodate nonzero initial conditions)	Complete Solution (transient + steady-state)
Everlasting	Any	Bilateral Laplace Transform or Fourier Transform	Complete Solution (transient + steady-state)

Table 13-6 Methods of solution.