Concept Question 13-7: What distinguishes the phase angles ϕ_{n} of an even-symmetrical function from those of an odd-symmetrical function?

Even Symmetry: $f(t)=f(-t)$

$$
\begin{align*}
& a_{0}=\frac{2}{T} \int_{0}^{T / 2} f(t) d t \\
& a_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \cos \left(n \omega_{0} t\right) d t \tag{13.31}\\
& b_{n}=0 \\
& A_{n}=\left|a_{n}\right|, \quad \text { and } \quad \phi_{n}= \begin{cases}0 & \text { if } a_{n}>0 \\
180^{\circ} & \text { if } a_{n}<0\end{cases}
\end{align*}
$$

Odd Symmetry: $f(t)=-f(-t)$

$$
\begin{align*}
& a_{0}=0, \quad a_{n}=0 \\
& b_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \sin \left(n \omega_{0} t\right) d t \tag{13.32}\\
& A_{n}=\left|b_{n}\right| \quad \text { and } \quad \phi_{n}= \begin{cases}-90^{\circ} & \text { if } b_{n}>0 \\
90^{\circ} & \text { if } b_{n}<0\end{cases}
\end{align*}
$$

Even symmetry: phase angles are 0 or 180°. Odd symmetry: phase angles are $\pm 90^{\circ}$.

