Concept Question 8-2: Why is Eq. (8.10) true, irrespective of the values of ϕ_{1} and ϕ_{2} ? Explain in terms of a diagram.

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(\frac{2 \pi n t}{T}+\phi_{1}\right) d t=\frac{1}{2} \\
& \text { and } \\
& \frac{1}{T} \int_{0}^{T} \sin ^{2}\left(\frac{2 \pi n t}{T}+\phi_{2}\right) d t=\frac{1}{2}
\end{aligned}
$$

for any values of ϕ_{1} and ϕ_{2}.

A constant value of ϕ_{1} or ϕ_{2} simply shifts the waveforms along the t axis. Since the integrations are over a full period, the integrated area is always the same.

