Concept Question 8-3: What does rms stand for and how does it relate to its definition?

$$P_{\text{av}} = \frac{1}{T} \int_{0}^{T} p(t) \ dt = \frac{1}{T} \int_{0}^{T} i^{2}(t) \ R \ dt.$$
 (8.11)

▶ We would like to introduce a new attribute of i(t), called its *effective value*, I_{eff} , defined such that the average power P_{av} delivered by i(t) to resistor R is equivalent to what a dc current I_{eff} would deliver to R, namely $I_{\text{eff}}^2 R$. \blacktriangleleft

That is,

$$I_{\text{eff}}^2 R = P_{\text{av}} = \frac{1}{T} \int_0^T i^2(t) \ R \ dt.$$
 (8.12)

Solving for I_{eff} gives

$$I_{\text{eff}} = \sqrt{\frac{1}{T} \int_{0}^{T} i^2(t) dt}$$
 (8.13)

According to Eq. (8.13), $I_{\rm eff}$ is obtained by taking the square **root** of the **mean** (average value) of the **square** of i(t). The three terms characterizing the operation are coupled together to form **root-mean-square** (**rms** for short) and $I_{\rm eff}$ is relabeled $I_{\rm rms}$.